
Grand
Unified
Socket
Interface

User’s Manual
Version 1.55

Last Updated 20Apr95

Matthias Neeracher <neeri@iis.ee.ethz.ch>

Introduction
GUSI is an extension and partial replacement of the MPW runtime library.
Its main objective is to provide a more or less simple and consistent
interface across the following communication domains

 Files
Ordinary Macintosh files and MPW pseudo devices.

 Unix
Memory based communication within a single machine (This
name exists for historical reasons).

 Appletalk
ADSP (and possibly in the future DDP) communication over a
network.

 PPC
Local and remote connections with the System 7 PPC Toolbox

 Internet
TCP and UDP connections over MacTCP.

 PAP
Connections with the Printer Access Protocol, typically to a
networked PostScript printer.

Additionally, GUSI adds some UNIX library calls dealing with files which
were missing, like chdir(), getcwd(), symlink(), and readlink(), and
changes a few other library calls to behave more like their UNIX
counterparts.
The most recent version of GUSI may be obtained by anonymous ftp
from ftp.switch.ch in the directory software/mac/src/mpw_c.
There is also a mailing list devoted to discussions about GUSI. You can
join the list by sending email to <gusi-request@iis.ee.ethz.ch>.

User's Manual
For ease of access, the manual has been split up into a number of
sections

GUSI_Install Installing and using the GUSI headers and
libraries
GUSI_Common Routines common to all GUSI socket families
GUSI_Files Routines specific to the file system
GUSI_Unix Routines specific to memory based (UNIX) sockets
GUSI_Appletalk Routines specific to AppleTalk sockets
GUSI_PPC Routines specific to PPC Toolbox sockets
GUSI_INET Routines specific to internet sockets
GUSI_PAP Routines specific to PAP sockets
GUSI_Misc Miscellaneous routines
GUSI_Advanced Advanced techniques

Copying
Copyright (C) 1992-1995 Matthias Neeracher
Permission is granted to anyone to use this software for any purpose
on any computer system, and to redistribute it freely, subject to the
following restrictions

The author is not responsible for the consequences of use of
this software, no matter how awful, even if they arise from
defects in it.
The origin of this software must not be misrepresented, either
by explicit claim or by omission.
Altered versions must be plainly marked as such, and must not
be misrepresented as being the original software.

Design Objectives
GUSI was developed according to at least three mutually conflicting
standards

The definition of the existing C library.
The behavior of the corresponding UNIX calls. While my
original guideline was a set of discarded SunOS manuals, my
current reference point is the ANSI/IEEE POSIX standard (A
borrowed copy of the 1988 edition, if you really want to know;
feel free to donate me a copy of the 1992 edition). The
behaviour of the socket calls is, of course, modeled after their
BSD implementation.
The author's judgement, prejudices, laziness, and limited
resources.

In general, the behavior of the corresponding POSIX/BSD library call
was implemented, since this faciliates porting UNIXish utilities to the
Macintosh.

Acknowledgements
I would like to thank all who have agreed to beta test this code and
who have provided feedback.
The TCP/IP code in GUSIINET.cp, GUSITCP.cp, and GUSIUDP.cp is derived
from a socket library written by Charlie Reiman
<reiman@talisman.kaleida.com>, which in turn is based on code
written by Tom Milligan <milligan@madhaus.utcs.utoronto.ca>.
The PAP code in GUSIPAP.cp is derived from code written by Sak
Wathanasin <sw@nan.co.uk>.
Martin Heller <heller@gis.geogr.unizh.ch> suggested to move the
documentation to HTML and wrote the HTML to RTF converter. Ed
Draper <draper@usis.com> provided the PDF translation.
Many of the header files in the include subdirectory are borrowed
from BSD 4.4-lite, therefore This product includes software developed
by the University of California, Berkeley and its contributors.

Installing and using GUSI
This section discusses how you can install GUSI on your disk and use it
for your programs.
To install GUSI, change in the MPW Shell to its directory and type
 BuildProgram Install <Enter>

This will install all necessary files in {CIncludes}, {CLibraries}, and
{RIncludes}, respectively. It will also install /etc/services in your
preferences folder, prompting you if you have an older version there.
This requires that you have MPW Perl installed, which is available in
the same ftp directory as GUSI.
To use GUSI, include one or more of the following header files in your
program

 GUSI.h
The main file. This includes almost everything else.

 TFileSpec.h
FSSpec manipulation routines.

 dirent.h
Routines to access all entries in a directory.

 netdb.h
Looking up TCP/IP host names.

 netinet/in.h
The address format for TCP/IP sockets.

 sys/errno.h
The errors codes returned by GUSI routines.

 sys/ioctl.h
Codes to pass to ioctl().

 sys/socket.h
Data types for socket calls.

 sys/stat.h
Getting information about files.

 sys/types.h

More data types.
 sys/uio.h

Data types for scatter/gather calls.
 sys/un.h

The address format for Unix domain sockets.
 unistd.h

Prototypes for most routines defined in GUSI.
GUSI expects the Macintosh Toolbox to be initialized. This will happen
automatically under some circumstances (if you're writing an MPW tool
with the non-CodeWarrior compilers or if you are linking with SIOW and
are forcing a write to standard output or standard error before you
are using any non-file GUSI routines, but it's often wiser to do an
explicit initialization anyway.
You should init the Toolbox in the following way
 InitGraf((Ptr) &qd.thePort);
 InitFonts();
 InitWindows();
 InitMenus();
 TEInit();
 InitDialogs(nil);
 InitCursor();

You have to link your program with the GUSI library. The exact
procedure differs slightly between the MPW C version, the PPCC version,
and the CodeWarrior version.

Linking with MPW C GUSI
For the MPW C version, you should link with {CLibraries}GUSI.o, and
optionally one or several configuration files. Currently, the following
configuration files exist

 GUSI_Everything.cfg
Include code for everything defined in GUSI.

 GUSI_Appletalk.cfg
Include code for AppleTalk sockets.

 GUSI_Internet.cfg
Include code for MacTCP sockets.

 GUSI_PAP.cfg
Include code for PAP sockets.

 GUSI_PPC.cfg
Include code for PPC sockets.

 GUSI_Unix.cfg
Include code for Unix domain sockets.

If you don't specify any configuration files, only the file related
routines will be included. It's important that these files appear before
all other libraries.
Linking with GUSI doesn't free you from linking in the standard
libraries, typically
 {Libraries}Runtime.o
 {Libraries}Interface.o
 {CLibraries}StdCLib.o
 {Libraries}ToolLibs.o

Linking with PPCC GUSI
For the PPCC version, you should link with {PPCLibraries}GUSI.xcoff and
if you are linking with SIOW, also with {PPCLibraries}GUSI.xcoff. The
PPCC version currently doesn't support flexible configuration. Like with
the MPW C version, GUSI should be first in your link, and you have to link
with the standard libraries.
GUSI for PPCC makes use of Code Fragment Manager version numbers,
therefore you have to specify the correct version number for MakePEF
with the -l option.
 -l "GUSI.xcoff=GUSI#0x01508000-0x01508000"

In case you were wondering, this encodes the version number (1.5.0)
the same way as the header of a 'vers' resource.

Linking with CodeWarrior GUSI
The easiest way to get started with a CodeWarrior GUSI application is by
cloning from the appropriate project stationery in the Lib directory.
The principle of operation is the same as with the other versions First
GUSI.Lib, and then the standard libraries have to be specified. To
create an MPW tool with the CodeWarrior compilers, you additionally
have to link with GUSIMPW.Lib before GUSI.Lib
The CodeWarrior version uses a new configuration mechanism that will
eventually be adapted in the other versions as well At the beginning of
your application, call GUSISetup for the components you need.
Currently, the following components are defined

 GUSISetup(GUSIwithSIOUXSockets)
Allows use of the SIOUX library for standard I/O.

 GUSISetup(GUSIwithAppleTalkSockets)
Includes ADSP sockets.

 GUSISetup(GUSIwithInternetSockets)
Includes TCP and UDP sockets.

 GUSISetup(GUSIwithPAPSockets)
Includes PAP sockets.

 GUSISetup(GUSIwithPPCSockets)
Includes PPC sockets.

 GUSISetup(GUSIwithUnixSockets)
Includes Unix domain sockets.

If you call GUSIDefaultSetup() instead, all of the above will be included.
These calls should be included right at the beginning of your main()
procedure.

Warning messages, Rezzing
You will get lots of warning messages about duplicate definitions, but
that's ok (Which means I can't do anything about it).
You should also rez your program with GUSI.r. The section
GUSI_Advanced/Resources discusses when and how to add your own
configuration resource to customize GUSI defaults. Don't forget that
your PowerPC programs also need a cfrg resource.

Overview
This section discusses the routines common to all, or almost all
communication domains. These routines return -1 if an error
occurred, and set the variable errno to an error code. On success, the
routines return 0 or some positive value.
Here's a list of all error codes and their typical explanations. The most
important of them are repeated for the individual calls.

 EACCES
Permission denied An attempt was made to access a file in a way
forbidden by its file access permissions, e.g., to open() a locked
file for writing.

 EADDRINUSE
Address already in use bind() was called with an address already
in use by another socket.

 EADDRNOTAVAIL
Can't assign requested address bind() was called with an
address which this socket can't assume, e.g., a TCP/IP address
whose in_addr specifies a different host.

 EAFNOSUPPORT
Address family not supported You haven't linked with this socket
family or have specified a nonexisting family, e.g., AF_CHAOS.

 EALREADY
Operation already in progress, e.g., connect() was called twice in
a row for a nonblocking socket.

 EBADF
Bad file descriptor The file descriptor you specified is not open.

 EBUSY
Request for a system resource already in incompatible use, e.g.,
attempt to delete an open file.

 ECONNREFUSED
Connection refused, e.g. you specified an unused port for a
connect()

 EEXIST
File exists, and you tried to open it with O_EXCL.

 EHOSTDOWN
Remote host is down.

 EHOSTUNREACH
No route to host.

 EINPROGRESS
Operation now in progress. This is *not* an error, but returned
from nonblocking operations, e.g., nonblocking connect().

 EINTR
Interrupted system call The user pressed Command-. or alarm()
timed out.

 EINVAL
Invalid argument or various other error conditions.

 EIO
Input/output error.

 EISCONN
Socket is already connected.

 EISDIR
Is a directory, e.g. you tried to open() a directory.

 EMFILE
Too many open files.

 EMSGSIZE
Message too long, e.g. for an UDP send().

 ENAMETOOLONG
File name too long.

 ENETDOWN
Network is down, e.g., Appletalk is turned off in the chooser.

 ENFILE
Too many open files in system.

 ENOBUFS
No buffer space available.

 ENOENT
No such file or directory.

 ENOEXEC

Severe error with the PowerPC standard library.
 ENOMEM

Cannot allocate memory.
 ENOSPC

No space left on device.
 ENOTCONN

Socket is not connected, e.g., neither connect() nor accept() has
been called successfully for it.

 ENOTDIR
Not a directory.

 ENOTEMPTY
Directory not empty, e.g., attempt to delete nonempty directory.

 ENXIO
Device not configured, e.g., MacTCP control panel
misconfigured.

 EOPNOTSUPP
Operation not supported on socket, e.g., sendto() on a stream
socket.

 EPFNOSUPPORT
Protocol family not supported, i.e., attempted use of ADSP on a
machine that has AppleTalk but not ADSP.

 EPROTONOSUPPORT
Protocol not supported, e.g., you called getprotobyname() with
neither "tcp" nor "udp" specified.

 ERANGE
Result too large, e.g., getcwd() called with insufficient buffer.

 EROFS
Read-only file system.

 ESHUTDOWN
Can't send after socket shutdown.

 ESOCKTNOSUPPORT
Socket type not supported, e.g., datagram PPC toolbox sockets.

 ESPIPE
Illegal seek, e.g., lseek() called for a TCP socket.

 EWOULDBLOCK
Nonblocking operation would block.

 EXDEV
Cross-device link, e.g. FSpSmartMove() attempted to move file to a
different volume.

Creating and destroying sockets
A socket is created with socket() and destroyed with close().
int socket(int af, int type, int protocol) creates an endpoint for
communication and returns a descriptor. af specifies the
communication domain to be used. Valid values are

 AF_UNIX
Communication internal to a single Mac.

 AF_INET
TCP/IP, using MacTCP.

 AF_APPLETALK
Appletalk, using ADSP.

 AF_PPC
The Program-to-Program Communication Toolbox.

type specifies the semantics of the communication. The following two
types are available

 SOCK_STREAM
A two way, reliable, connection based byte stream.

 SOCK_DGRAM
Connectionless, unreliable messages of a fixed maximum length.

protocol would be used to specify an alternate protocol to be used with
a socket. In GUSI, however, this parameter is always ignored.
Error codes

 EINVAL
The af you specified doesn't exist.

 EMFILE

The descriptor table is full.
void close(int fd) removes the access path associated with the
descriptor, and closes the file or socket if the last access path
referring to it was removed.

Prompting the user for an address
To give the user the opportunity of entering an address for a socket to
be bound or connected to, the choose() routine was introduced in GUSI.
This routine has no counterpart in UNIX implementations.
C puts up a modal dialog prompting the user to choose an address. dom
specifies the communication domain, like in socket. type may be used
by future communication domains to further differentiate within a
domain, but is ignored by current domains. prompt is a message that
will appear in the dialog. constraint may be used to restrict the types
of acceptable addresses (For more information, consult the section of
the communication domain). The following two flags are defined for
most socket types

 CHOOSE_DEFAULT
Offer the contents passed in name as the default choice.

 CHOOSE_NEW
Prompt for a new address, suitable for passing to bind(). Default
is prompting for an existing address, to be used by connect().

name on input contains a default address if CHOOSE_DEFAULT is set.
On output, it is set to the address chosen.
Error codes

 EINVAL
One of the flags is not (yet) supported by this communications
domain. This error is never reported for CHOOSE_DEFAULT ,
which might get silently ignored.

 EINTR
The user chose "Cancel" in the dialog.

Establishing connections between sockets
Before you can transmit data on a stream socket, it must be connected
to a peer socket. Connection establishment is asymmetrical The
server socket registers its address with bind(), calls listen() to

indicate its willingness to accept connections and accepts them by
calling accept(). The client socket, after possibly having registered its
address with bind() (This is not necessary for all socket families as
some will automatically assign an address) calls connect() to establish
a connection with a server.
It is possible, but not required, to call connect() for datagram sockets.
int bind(int s, const struct sockaddr *name, int namelen) binds a
socket to its address. The format of the address is different for every
socket family. For some families, you may ask the user for an address
by calling choose().
Error codes

 EAFNOSUPPORT
name specifies an illegal address family for this socket.

 EADDRINUSE
There is already another socket with this address.

int listen(int s, int qlen) turns a socket into a listener. qlen
determines how many sockets can concurrently wait for a connection,
but is ignored for almost all socket families.
int accept(int s, struct sockaddr *addr, int *addrlen) accepts a
connection for a socket on a new socket and returns the descriptor of
the new socket. If addr is not NULL, the address of the connecting
socket will be assigned to it.
You can find out if a connection is pending by calling select() to find
out if the socket is ready for reading.
Error codes

 ENOTCONN
You did not call listen() for this socket.

 EWOULDBLOCK
The socket is nonblocking and no socket is trying to connect.

int connect(int s, const struct sockaddr *addr, int addrlen) tries to
connect to the socket whose address is in addr. If the socket is
nonblocking and the connection cannot be made immediately,
connect() returns EINPROGRESS . You can find out if the connection
has been established by calling select() to find out if the socket is
ready for writing.

Error codes

 EAFNOSUPPORT
name specifies an illegal address family for this socket.

 EISCONN
The socket is already connected.

 EADDRNOAVAIL
There is no socket with the given address.

 ECONNREFUSED
The socket refused the connection.

 EINPROGRESS
The socket is nonblocking and the connection is being
established.

Transmitting data between sockets
You can write data to a socket using write(), writev(), send(), sendto(),
or sendmsg(). You can read data from a socket using read(), readv(),
recv(), recvfrom(), or recvmsg().
int read(int s, char *buffer, unsigned buflen) reads up to buflen bytes
from the socket. read() for sockets differs from read() for files mainly
in that it may read fewer than the requested number of bytes without
waiting for the rest to arrive.
Error codes

 EWOULDBLOCK
The socket is nonblocking and there is no data immediately
available.

int readv(int s, const struct iovec *iov, int count) performs the same
action, but scatters the input data into the count buffers of the
iovJarray, always filling one buffer completely before proceeding to
the next. iovec is defined as follows
 struct iovec {
 caddr_t iov_base; /* Address of this buffer */
 int iov_len; /* Length of the buffer */
 };

int recv(int s, void *buffer, int buflen, int flags) is identical to
read(), except for the flags parameter. If the MSG_OOB flag is set for a

stream socket that supports out-of-band data, recv() reads out-of-band
data.
int recvfrom(int s, void *buffer, int buflen, int flags, void *from, int
*fromlen) is the equivalent of recv() for unconnected datagram
sockets. If from is not NULL, it will be set to the address of the sender of
the message.
int recvmsg(int s, struct msghdr *msg, int flags) is the most general
routine, combining the possibilities of readv() and recvfrom(). msghdr is
defined as follows
 struct msghdr {
 caddr_t msg_name; /* Like from in recvfrom() */
 int msg_namelen; /* Like fromlen in recvfrom() */
 struct iovec *msg_iov; /* Scatter/gather array */
 int msg_iovlen; /* Number of elements in msg_iov */
 caddr_t msg_accrights; /* Access rights sent/received. Not
used in GUSI */
 int msg_accrightslen;
 };

int write(int s, char *buffer, unsigned buflen) writes up to buflen
bytes to the socket. As opposed to read(), write() for nonblocking
sockets always blocks until all bytes are written or an error occurs.
Error codes

 EWOULDBLOCK
The socket is nonblocking and data can't be immediately
written.

int writev(int s, const struct iovec *iov, int count) performs the
same action, but gathers the output data from the count buffers of the
iovJarray, always sending one buffer completely before proceeding to
the next.
int send(int s, void *buffer, int buflen, int flags) is identical to
write(), except for the flags parameter. If the MSG_OOB flag is set for a
stream socket that supports out-of-band data, send() sends an out-of-
band message.
int sendto(int s, void *buffer, int buflen, int flags, void *to, int
*tolen) is the equivalent of send() for unconnected datagram sockets.
The message will be sent to the socket whose address is given in to.
int sendmsg(int s, const struct msghdr *msg, int flags) combines the
possibilities of writev() and sendto().

I/O multiplexing

int select(int width, fd_set *readfds, fd_set *writefds, fd_set
*exceptfds, struct timeval *timeout) examines the I/O descriptors
specified by the bit masks readfs, writefs, and exceptfs to see if they
are ready for reading, writing, or have an exception pending. width is
the number of significant bits in the bit mask. select() replaces the bit
masks with masks of those descriptors which are ready and returns
the total number of ready descriptors. timeout, if not NULL, specifies the
maximum time to wait for a descriptor to become ready. If timeout is
NULL, select() waits indefinitely. To do a poll, pass a pointer to a zero
timeval value in timeout. Any of readfds, writefds, or exceptfds may be
given as NULL if no descriptors are of interest.
Error codes

 EBADF
One of the bit masks specified an invalid descriptor.

The descriptor bit masks can be manipulated with the following
macros
 FD_ZERO(fds); /* Clear all bits in *fds */
 FD_SET(n, fds); /* Set bit n in *fds */
 FD_CLR(n, fds); /* Clear bit n in *fds */
 FD_ISSET(n, fds); /* Return 1 if bit n in *fds is set, else 0 */

Getting and changing properties of
sockets
You can obtain the address of a socket and the socket it is connected
to by calling getsockname() and getpeername() respectively. You can
query and manipulate other properties of a socket by calling ioctl(),
fcntl(), getsockopt(), and setsockopt(). You can create additional
descriptors for a socket by calling dup() or dup2().
int getsockname(int s, struct sockaddr *name, int *namelen) returns in
*name the address the socket is bound to. *namelen should be set to the
maximum length of name and will be set by getsockname() to the actual
length of the name.
int getpeername(int s, struct sockaddr *name, int *namelen) returns in
*name the address of the socket that this socket is connected to.
*namelen should be set to the maximum length of name and will be set
by getpeername() to the actual length of the name.
int ioctl(int d, unsigned int request, long *argp) performs various
operations on the socket, depending on the request. The following
codes are valid for all socket families

 FIONBIO
Make the socket blocking if the long pointed to by argp is 0, else
make it nonblocking.

 FIONREAD
Set *argp to the number of bytes waiting to be read.

Error codes

 EOPNOTSUPP
The operation you requested with request is not supported by
this socket family.

int fcntl(int s, unsigned int cmd, int arg) provides additional control
over a socket. The following values of cmd are defined for all socket
families

 F_DUPFD
Return a new descriptor greater than or equal to arg which
refers to the same socket.

 F_GETFL
Return descriptor status flags.

 F_SETFL
Set descriptor status flags to arg.

The only status flag implemented is FNDELAY which is true if the socket
is nonblocking.
Error codes

 EOPNOTSUPP
The operation you requested with cmd is not supported by this
socket family.

int getsockopt(int s, int level, int optname, void *optval, int *
optlen) is used to request information about sockets. It is not
implemented in GUSI.
int setsockopt(int s, int level, int optname, void *optval, int optlen)
is used to set options associated with a socket. It is not implemented
in GUSI.

int dup(int fd) returns a new descriptor referring to the same socket
as fd. The old and new descriptors are indistinguishible. The new
descriptor will always be the smallest free descriptor.
int dup2(int oldfd, int newfd) closes newfd if it was open and makes it
a duplicate of oldfd. The old and new descriptors are indistinguishible.

File system calls
Files are unlike sockets in many respects Their length is never
changed by other processes, they can be rewound. There are also
many calls which are specific to files.

Differences to generic behavior
The following calls make no sense for files and return an error of
EOPNOTSUPP
 socket()
 bind()
 listen()
 accept()
 connect()
 getsockname()
 getpeername()
 getsockopt()
 setsockopt()

The following calls will work, but might be frowned upon by your
friends (besides, UNIX systems generally wouldn't like them)
 recv()
 recvfrom()
 recvmsg()
 send()
 sendto()
 sendmsg()

choose() returns zero terminated C strings in name. It accepts an
additional flag CHOOSE_DIR. If this is set, choose() will select directories
instead of files.
You may restrict the files presented for choosing by passing a pointer
to the following structure for the constraint argument
 typedef struct {
 short numTypes; /* Number of legitimate file types */
 SFTypeList types; /* The types, like 'TEXT' */
 }sa_constr_file;

select() will give boring results. File descriptors are always
considered ready to read or write, and never give exceptions.
ioctl() and fcntl() don't support manipulating the blocking state of a
file descriptor or reading the number of bytes available for reading,
but will accept lots of other requests---Check with your trusty MPW C
documentation.

Routines specific to the file system
In this section, you'll meet lots of good old friends. Some of these
routines also exist in the standard MPW libraries, but the GUSI
versions have a few differences

File names are relative to the directory specified by chdir().
You can define special treatment for some file names (See
below under "Adding your own file families").
You can pass FSSpec values to the routines by encoding them
with FSp2Encoding() (See "FSSpec routines" below).

int stat(const char * path, struct stat * buf) returns information
about a file. struct stat is defined as follows
 struct stat {
 dev_t st_dev; /* Volume reference number of file */
 ino_t st_ino; /* File or directory ID */
 u_short st_mode; /* Type and permission of file */
 short st_nlink; /* Always 1 */
 short st_uid; /* Set to 0 */
 short st_gid; /* Set to 0 */
 dev_t st_rdev; /* Set to 0 */
 off_t st_size;
 time_t st_atime; /* Set to st_mtime */
 time_t st_mtime;
 time_t st_ctime;
 long st_blksize;
 long st_blocks;
 };

st_mode is composed of a file type and of file permissions. The file type
may be one of the following

 S_IFREG
A regular file.

 S_IFDIR
A directory.

 S_IFLNK
A finder alias file.

 S_IFCHR
A console file under MPW or SIOW.

 S_IFSOCK

A file representing a UNIX domain socket.
Permissions consist of an octal digit repeated three times. The three
bits in the digit have the following meaning

 4
File can be read.

 2
File can be written.

 1
File can be executed, i.e., its type is `APPL' or 'appe'. The
definition of executability can be customized with the
GUSI_ExecHook discussed in the advanced section.

int lstat(const char * path, struct stat * buf) works just like stat(),
but if path is a symbolic link, lstat() will return information about the
link and not about the file it points to.
int fstat(int fd, struct stat * buf) is the equivalent of stat() for
descriptors representing open files. While it is legal to call fstat() for
sockets, the information returned is not really interesting. The file
type in st_mode will be S_IFSOCK for sockets.
int chmod(const char * filename, mode_t mode) changes the mode
returned by stat(). Currently, the only thing you can do with chmod() is
to turn the write permission off an on. This is translated to setting and
clearing the file lock bit.
int utime(const char * file, const struct utimbuf * tim) changes the
modification time of a file. struct utimbuf is defined as
 struct utimbuf {
 time_t actime; /* Access time */
 time_t modtime; /* Modification time */
 };

actime is ignored, as the Macintosh doesn't store access times. The
modification of file is set to modtime.
int isatty(int fd) returns 1 if fd represents a terminal (i.e. is
connected to "DevStdin" and the like), 0 otherwise.
long lseek(int, long, int) works the same as the MPW routine, and will
return ESPIPE if called for a socket.
int remove(const char *filename) removes the named file. If filename is a
symbolic link, the link will be removed and not the file.

int unlink(const char *filename) is identical to remove(). Note that on
the Mac, unlink() on open files behaves differently from UNIX.
int rename(const char *oldname, const char *newname) renames and/or
moves a file. oldname and newname must specify the same volume, but as
opposed to the standard MPW routine, they may specify different
folders.
int open(const char*, int flags) opens a named file. The flags consist
of one of the following modes

 O_RDONLY
Open for reading only.

 WR_ONLY
Open for writing only.

 O_RDWR
Open for reading and writing.

Optionally combined with one or more of

 O_APPEND
The file pointer is set to the end of the file before each write.

 O_RSRC
Open resource fork.

 O_CREAT
If the file does not exist, it is created.

 O_EXCL
In combination with O_CREAT , return an error if file already
exists.

 O_TRUNC
If the file exists, its length is truncated to 0; the mode is
unchanged.

 O_ALIAS
If the named file is a symbolic link, open the link, not the file it
points to (This is most likely an incredibly bad idea).

int creat(const char * name) is identical to open(name,
O_WRONLY+O_TRUNC+O_CREAT). If the file didn't exist before, GUSI determines

its file type and creator of the according to rules outlined in the
section "Resources" below.
int faccess(const char *filename, unsigned int cmd, long *arg) works
the same as the corresponding MPW routine, but respects calls to
chdir() for partial filenames.
void fgetfileinfo(char *filename, unsigned long *newcreator, unsigned
long *newtype) returns the file type and creator of a file.
void fsetfileinfo(char *filename, unsigned long newcreator, unsigned
long newtype) sets the file type and creator of a file to the given values.
int symlink(const char* linkto, const char* linkname) creates a file
named linkname that contains an alias resource pointing to linkto. The
created file should be indistinguishible from an alias file created by
the System 7 Finder. Note that aliases bear only superficial
similiarities to UNIX symbolic links, especially once you start renaming
files.
int readlink(const char* path, char* buf, int bufsiz) returns in buf the
name of the file that path points to.
int truncate(const char * path, off_t length) causes a file to have a
size equal to length bytes, shortening it or extending it with zero bytes
as necessary.
int ftruncate(int fd, off_t length) does the same thing with an open
file.
int access(const char * path, int mode) tests if you have the specified
access rights to a file. mode may be either F_OK, in which case the file is
tested for existence, or a combination of the following

 R_OK
Tests if file is readable.

 W_OK
Tests if file is writeable.

 X_OK
Tests if file is executable. As with stat(), the definition of
executability may be customized.

access() returns 0 if the specified access rights exist, otherwise it sets
errno and returns -1.
int mkdir(const char * path) creates a new directory.
int rmdir(const char * path) deletes an empty directory.

int chdir(const char * path) makes all future partial pathnames
relative to this directory.
char * getcwd(const char * buf, int size) returns a pointer to the
current directory pathname. If buf is NULL, size bytes will be allocated
using malloc().
Error codes

 ENAMETOOLONG
The pathname of the current directory is greater than size.

 ENOMEM
buf was NULL and malloc() failed.

A number of calls facilitate scanning directories. Directory entries are
represented by following structure
 struct dirent {
 u_long d_fileno; /* file number of entry */
 u_short d_reclen; /* length of this record */
 u_short d_namlen; /* length of string in d_name */
 #define MAXNAMLEN 255
 char d_name[MAXNAMLEN + 1]; /* name must be no longer than this
*/
 };

DIR * opendir(const char * dirname) opens a directory stream and
returns a pointer or NULL if the call failed.
struct dirent * readdir(DIR * dirp) returns the next entry from the
directory or NULL if all entries have been processed.
long telldir(const DIR * dirp) returns the position in the directory.
void seekdir(DIR * dirp, long loc) changes the position.
void rewinddir(DIR * dirp) restarts a scan at the beginning.
int closedir(DIR * dirp) closes the directory stream.
int scandir(const char * path, struct dirent *** entries, int (*want)
(struct dirent *), int (*sort)(const void *, const void *)) scans a
whole directory at once and returns a possibly sorted list of entries. If
want is not NULL, only entries for which want returns 1 are returned. If
sort is not NULL, the list is sorted using qsort() with sort as a
comparison function. If sort is NULL, the list will be sorted
alphabetically on a Mac, but not necessarily on other machines.

Unix domain sockets

This domain is quite regular and supports all calls that work on any
domain, except for out-of-band data.

Differences to generic behavior
Addresses are file system pathnames. GUSI complies to the Unix
implementation in that it doesn't require the name to be terminated
by a zero. Names that are generated by GUSI, however, will always be
zero terminated (but the zero won't be included in the count).
 struct sockaddr_un {
 short sun_family; /* Always AF_UNIX */
 char sun_path[108]; /* A pathname to a file */
 };

C<choose()> works both for existing and new addresses, and no
restriction
is possible (or necessary).

Appletalk sockets
Currently, only stream sockets (including out-of-band data) are
supported. Appletalk sockets should work between all networked
Macintoshes and between applications on a single Mac, provided the
SetSelfSend flag is turned on. However, PPC sockets have a better
performance for interapplication communication on a single Machine.

Differences to generic behavior
Two classes of addresses are supported for AppleTalk. The main
address type specifies numeric addresses.
 struct sockaddr_atlk {
 short family; /* Always AF_APPLETALK */
 AddrBlock addr; /* The numeric AppleTalk socket address
*/
 };

For bind() and connect(), however, you are also allowed to specify
symbolic addresses. bind() registers an NBP address, and connect()
performs an NBP lookup. Registered NBP adresses are automatically
released when the socket is closed. No call ever returns a symbolic
address.
 struct sockaddr_atlk_sym {
 short family; /* Always ATALK_SYMADDR */
 EntityName name; /* The symbolic NBP address */
 };

choose() currently only works for existing sockets. The peer must have
registered a symbolic address. To restrict the choice of addresses
presented, pass a pointer to the following structure for the constraint
argument
 typedef struct {
 short numTypes; /* Number of allowed types */
 NLType types; /* List of types */
 }sa_constr_atlk;

PPC sockets
These provide authenticated stream sockets without out-of-band data.
PPC sockets should work between all networked Macintoshes running
System 7, and between applications on a single Macintosh running
System 7.

Differences to generic behavior
PPC socket addresses have the following format
 struct sockaddr_ppc {
 short family; /* Always AF_PPC
*/
 LocationNameRec location; /* Check your trusty Inside
Macintosh */
 PPCPortRec port;
 };

choose() currently only works for existing sockets. To restrict the
choice of addresses presented, pass a pointer to the following
structure for the constraint argument
 typedef struct {
 short flags;
 Str32 nbpType;
 PPCPortRec match;
 }sa_constr_ppc;

flags is obtained by or'ing one or several of the following constants

 PPC_CON_NEWSTYLE
Always required for compatibility reasons.

 PPC_CON_MATCH_NBP
Only display machines that have registered an entity of type
nbpType.

 PPC_CON_MATCH_NAME
Only display ports whose name matches match.name.

 PPC_CON_MATCH_TYPE
Only display ports whose type matches match.u.portType.

nbpType specifies the machines to be displayed, as explained above.
match contains the name and/or type to match against.

connect() will block even if the socket is nonblocking. In practice,
however, delays are likely to be quite short, as it never has to block on
a higher level protocol and the PPC ToolBox will automatically
establish the connection.

Internet sockets
These are the real thing for real programmers. Out-of-band data only
works for sending. Both stream (TCP) and datagram (UDP) sockets
are supported. Internet sockets are also suited for interapplication
communication on a single machine, provided it runs MacTCP.

Differences to generic behavior
Internet socket addresses have the following format
 struct in_addr {
 u_long s_addr;
 };
 struct sockaddr_in {
 u_char sin_len; /* Ignored */
 u_char sin_family; /* Always C<AF_INET> */
 u_short sin_port; /* Port number */
 struct in_addr sin_addr; /* Host ID */
 char sin_zero[8];
 };

Routines specific to TCP/IP sockets
There are several routines to convert between numeric and symbolic
addresses.
Hosts are represented by the following structure
 struct hostent {
 char *h_name; /* Official name of the host */
 char **h_aliases; /* A zero terminated array of alternate names
for the host */
 int h_addrtype; /* Always AF_INET */
 int h_length; /* The length, in bytes, of the address */
 char **h_addr_list; /* A zero terminated array of network
addresses for the host */
 };

struct hostent * gethostbyname(char *name) returns an entry for the host
with the given name or NULL if a host with this name can't be found.
struct hostent * gethostbyaddr(const char *addrP, int, int) returns an
entry for the host with the given address or NULL if a host with this
name can't be found. addrP in fact has to be a struct in_addr *. The last
two parameters are ignored.
char * inet_ntoa(struct in_addr inaddr) converts an internet address
into the usual numeric string representation (e.g., 0x8184023C is
converted to "129.132.2.60")

struct in_addr inet_addr(char *address) converts a numeric string into
an internet address (If x is a valid address, inet_addr(inet_ntoa(x)) ==
x).
int gethostname(char *machname, long buflen) gets our name into buffer.
Services are represented by the following data structure
 struct servent {
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port number */
 char *s_proto; /* protocol to use ("tcp" or "udp") */
 };

void setservent(int stayopen) rewinds the file of services. If stayopen is
set, the file will remain open until endservent() is called, else it will be
closed after the next call to getservbyname() or getservbyport().
void endservent() closes the file of services.
struct servent * getservent() returns the next service from the file of
services, opening the file first if necessary. If the file is not found
(/etc/services in the preferences folder), a small built-in list is
consulted. If there are no more services, getservent() returns NULL.
struct servent * getservbyname (const char * name, const char * proto)
finds a named service by calling getservent() until the protocol
matches proto and either the name or one of the aliases matches name.
struct servent * getservbyport (int port, const char * proto) finds a
service by calling getservent() until the protocol matches proto and the
port matches port.
Protocols are represented by the following data structure
 struct protoent {
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list (always NULL for GUSI)*/
 int p_proto; /* protocol number */
 };

struct protoent * getprotobyname(char * name) finds a named protocol.
This call is rather unexciting.

PAP sockets
PAP, the AppleTalk Printer Access Protocol is a protocol which is
almost exclusively used to access networked printers. The current
implementation of PAP in GUSI is quite narrow in that it only
implements the workstation side of PAP and only in communication to
the currently selected LaserWriter. It is also doomed, as it depends on
Apple system resources that probably are not supported anymore in
Apple's Quickdraw GX printing architecture, but if there is enough
interest, the current implementation might be replaced some time.

Routines specific to PAP sockets
While PAP sockets behave in most respects like other sockets, they
can currently not be created with the socket() call, but are opened
with open().
int open("DevPrinter", int flags) opens a connection to the last
selected LaserWriter. flags is currently ignored.
Communication with LaserWriters is somewhat strange. The three
main uses of PAP sockets are probably interactive sessions, queries,
and downloads, which will be discussed in the following sections. As
in all other socket families, GUSI does no filtering of the transmitted
data, which means that lines sent by the LaserWriter will be separated
by linefeeds (ASCII 10) rather than carriage returns (ASCII 13), which
are used for this purpose in most other Mac contexts. For data you
send, it doesn't matter which one you use.
You start an interactive session by sending a line "executive" after
opening the socket. This will put lots of LaserWriters (certainly all
manufactured by Apple, but probably not a Linotronic) into interactive
mode. If you want to, you can now play terminal emulator and use
your LaserWriter as an expensive desk calculator.
A query is some PostScript code you send to a LaserWriter that you
expect to be answered. This is quite straightforward, except that
LaserWriters don't seem to answer until you have indicated to them
that no more data from you will be coming. Therefore, you have to call
shutdown(s,1) to shut the socket down for writing after you have
written your query and before you try to read the answer. The
following code demonstrates how to send a query to the printer
 int s = open("DevPrinter", O_RDWR);
 write(s, "FontDirectory /Gorilla-SemiBold exch known...", len);
 /* We won't write any more */
 shutdown(s, 1);
 while(read(s, buf, len) > 0)

 do_something();
 close(s);

If you want to simply download a file, you can also ignore the
LaserWriter's response and simply close the socket after downloading.

Miscellaneous
BSD memory routines
These are implemented as macros if you
 #include <compat.h>

void bzero(void * from, int len) zeroes len bytes, starting at from.
void bfill(void * from, int len, int x) fills len bytes, starting at from
with x.
void bcopy(void * from, void * to, int len) copies len bytes from from
to to.
int bcmp(void * s1, void * s2, int len) compares len bytes at s1
against len bytes at s2, returning zero if the two areas are equal,
nonzero otherwise.

Hooks
You can override some of GUSI's behaviour by providing hooks to
GUSI. Note that these often get called from deep within GUSI, so be
sure you understand what is required of a hook before overriding it.
GUSI hooks can be accessed with the following routines
 typedef void (*GUSIHook)(void);
 void GUSISetHook(GUSIHookCode code, GUSIHook hook);
 GUSIHook GUSIGetHook(GUSIHookCode code);

Currently, two hooks are defined. The GUSI_SpinHook is defined in the
next section. The GUSI_ExecHook is used by GUSI to decide whether a
file or folder is to be considered "executable" or not. The default hook
considers all folders and all applications (i.e., files of type 'APPL' and
'appe' to be executable. To provide your own hook, call
 GUSISetHook(GUSI_ExecHook, (GUSIHook) my_exec_hook);

where my_exec_hook is defined as
 Boolean my_exec_hook(const GUSIFileRef & ref);

The old value is available as
 Boolean (*)(const GUSIFileRef & ref)GUSIgetHook(GUSI_ExecHook);

Blocking calls

Since the Macintosh doesn't have preemptive task switching, it is
important that other applications get a chance to run during blocking
calls. This section discusses the mechanism GUSI uses for that purpose.
While a routine is waiting for a blocking call to terminate, it
repeatedly calls a spin routine with the following parameters
 typedef enum spin_msg
 {
 SP_MISC, /* some weird thing, usually just return
immediately if you get this */
 SP_SELECT, /* in a select call, passes ticks the program is
prepared to wait */
 SP_NAME, /* getting a host by name */
 SP_ADDR, /* getting a host by address */
 SP_STREAM_READ, /* Stream read call */
 SP_STREAM_WRITE, /* Stream write call */
 SP_DGRAM_READ, /* Datagram read call */
 SP_DGRAM_WRITE, /* Datagram write call */
 SP_SLEEP, /* sleeping, passes ticks left to sleep */
 SP_AUTO_SPIN /* Automatically spinning, passes spin count */
 }spin_msg;
 typedef int (*GUSISpinFn)(spin_msg msg, long param);

If the spin routine returns a nonzero value, the call is interrupted and
EINTR returned. You can modify the spin routine with the following
calls
 GUSISetHook(GUSI_SpinHook, (GUSIHook) my_spin_hook);
 (GUSISpinFn)GUSIGetHook(GUSI_SpinHook);

(For backward compatibility, GUSI also defines the equivalents)
 int GUSISetSpin(GUSISpinFn routine);
 GUSISpinFn GUSIGetSpin(void);

Often, however, the default spin routine will do what you want It spins
a cursor and occasionally calls GetNextEvent() or WaitNextEvent(). By
default, only mouse down and suspend/resume events are handled,
but you can change that by passing your own GUSIEvtTable to
GUSISetEvents().
 int GUSISetEvents(GUSIEvtTable table);
 GUSIEvtHandler * GUSIGetEvents(void);

A GUSIEvtTable is a table of GUSIEvtHandlers, indexed by event code.
Presence of a non-nil entry in the table will cause that event class to
be allowed for GetNextEvent() or WaitNextEvent(). GUSI for MPW C and PPCC
includes one event table to be used with the SIOW library.
 typedef void (*GUSIEvtHandler)(EventRecord * ev);
 typedef GUSIEvtHandler GUSIEvtTable[24];
 extern GUSIEvtHandler GUSISIOWEvents[];

GUSI also supports three POSIX/BSD routines alarm(unsigned sec) will
after sec seconds cancel the current call, raise SIGALRM, and return
EINTR. Note that the default handler for SIGALRM terminates the
program, so be sure to install your own handler. alarm(0) cancels an
alarm and returns the remaining seconds. As opposed to POSIX
systems, the GUSI version of alarm() does not use real clock interrupts
and merely interrupts during a blocking call.
sleep(unsigned sec) sleeps for sec seconds, and usleep(unsigned usec)
does the same for usec micorseconds (rounded to 60ths of a tick).

Resources
A few GUSI routines (currently primarily choose()) need resources to
work correctly. These are added if you Rez your program with GUSI.r.
On startup, GUSI also looks for a preference resource with type 'GUZI'
(the 'Z' actually must be a capital Sigma) and ID GUSIRsrcID, which is
currently defined as follows
 #ifndef GUSI_PREF_VERSION
 #define GUSI_PREF_VERSION '0102'
 #endif
 type 'GUZI' {
 literal longint text = 'TEXT'; /* Type for creat'ed files
*/
 literal longint mpw = 'MPS '; /* Creator for creat'ed files
*/
 byte noAutoSpin, autoSpin; /* Automatically spin cursor ?
*/
 #if GUSI_PREF_VERSION >= '0110'
 boolean useChdir, dontUseChdir; /* Use chdir() ?
*/
 boolean approxStat, accurateStat; /* statbuf.st_nlink = # of
subdirectories ? */
 boolean noTCPDaemon, isTCPDaemon; /* Inetd client ?
*/
 boolean noUDPDaemon, isUDPDaemon;
 #if GUSI_PREF_VERSION >= '0150'
 boolean noConsole, hasConsole; /* Are we providing our own
devconsole ? */
 fill bit[3];
 #else
 fill bit[4];
 #endif
 literal longint = GUSI_PREF_VERSION;
 #if GUSI_PREF_VERSION >= '0120'
 integer = @t$$@>Countof(SuffixArray);
 wide array SuffixArray {
 literal longint; /* Suffix of file */
 literal longint; /* Type for file */
 literal longint; /* Creator for file */
 };
 #endif
 #endif

 };

To keep backwards compatible, the preference version is included,
and you are free to use whatever version of the preferences you want
by defining GUSI_PREF_VERSION.
The first two fields define the file type and creator, respectively, to be
used for files created by GUSI. The type and creator of existing files
will never be changed unless explicitely requested with fsetfileinfo().
The default is to create text files (type `TEXT') owned by the MPW Shell
(creator `MPS '). If you request a preference version of 1.2.0 and
higher, you are also allowed to specify a list of suffixes that are given
different types. An example of such a list would be
 {'SYM ', 'MPSY', 'sade' }

The autoSpin value, if nonzero, makes GUSI call the spin routine for
every call to read(), write(), send(), or recv(). This is useful for making
an I/O bound program MultiFinder friendly without having to insert
explicit calls to SpinCursor(). If you don't specify a preference
resource, autoSpin is assumed to be 1. You may specify arbitrary values
greater than one to make your program even friendlier; note,
however, that this will hurt performance.
The useChdir flag tells GUSI whether you change directories with the
toolbox calls PBSetVol() or PBHSetVol() or with the GUSI call chdir(). The
current directory will start with the directory your application resides
in or the current MPW directory, if you're running an MPW tool. If useChdir
is specified, the current directory will only change with chdir() calls. If
dontUseChdir is specified, the current directory will change with
toolbox calls, until you call chdir() the first time. This behaviour is
more consistent with the standard MPW library, but has IMHO no other
redeeming value. If you don't specify a preference resource, useChdir
is assumed.
If approxStat is specified, stat() and lstat() for directories return in
st_nlink the number of items in the directory + 2. If accurateStat is
specified, they return the number of subdirectories in the directory.
The latter has probably the best chances of being compatible with
some Unix software, but the former is often a sufficient upper bound,
is much faster, and most programs don't care about this value anyway.
If you don't specify a preference resource, approxStat is assumed.
The isTCPDaemon and isUDPDaemon flags turn GUSI programs into clients
for David Petersons inetd, as discussed below. If you don't specify a
preference resource, noTCPDaemon and noUDPDaemon are assumed.
The hasConsole flag should be set if you are overriding the default
"devconsole", as discussed below.

Advanced techniques
This section discusses a few techniques that probably not every user
of GUSI needs.

FSSpec routines
If you need to do complicated things with the Mac file system, the
normal GUSI routines are probably not sufficient, but you still might
want to use the internal mechanism GUSI uses. This mechanism is
provided in the header file TFileSpec.h, which defines both C and C++
interfaces. In the following, the C++ member functions will be
discussed and C equivalents will be mentioned where available.
OSErr TFileSpecError() returns the last error provoked by a TFileSpec
member function.
TFileSpecTFileSpec(const FSSpec & spec, Boolean useAlias = false)
constructs a TFileSpec from an FSSpec and resolves alias files unless
useAlias is true. (The useAlias parameter is also present in the
following routines, but will not be shown anymore).
TFileSpec(short vRefNum, long parID, ConstStr31Param name) constructs a
TFileSpec from its components.
TFileSpec(short wd, ConstStr31Param name) constructs a TFileSpec from a
working directory reference number and a path component.
This routine is available to C users as OSErr WD2FSSpec(short wd,
ConstStr31Param name, FSSpec * desc).
TFileSpec(const char * path) constructs a TFileSpec from a full or
relative path name. This routine is available to C users as OSErr
Path2FSSpec(const char * path, FSSpec * desc).
TFileSpec(OSType object, short vol = kOnSystemDisk, long dir = 0)
constructs special TFileSpecs, depending on object.
This routine is available to C users as OSErr Special2FSSpec(OSType
object, short vol, long dirID, FSSpec * desc).
All constants in Folders.h acceptable for FindFolder() can be passed,
e.g. the following

 kSystemFolderType
The system folder.

 kDesktopFolderType

The desktop folder; objects in this folder show on the desk top.
 kExtensionFolderType

Finder extensions go here.
 kPreferencesFolderType

Preferences for applications go here.
Furthermore, the value kTempFileType is defined, which creates a
temporary file in the temporary folder, or, if dir is nonzero, in the
directory you specify.
TFileSpec(short fRefNum) constructs a TFileSpec from the file reference
number of an open file.
In principle, a TFileSpec should be compatible with an FSSpec. However,
to be absolutely sure, you can call TFileSpecBless() which will call
FSMakeFSSpec() before passing the TFileSpec to a FSp file system
routine.
char * TFileSpecFullPath() returns the full path name of the file. The
address returned points to a static buffer, so it will be overwritten on
further calls. This routine is available to C users as char *
FSp2FullPath(const FSSpec * desc).
char * TFileSpecRelPath() works like FullPath(), but when the current
folder given by chdir() is a pparent folder of the object, a relative path
name will be returned. The address returned points to a static buffer,
so it will be overwritten on further calls. This routine is available to C
users as char * FSp2RelPath(const FSSpec * desc).
char * TFileSpecEncode() returns an ASCII encoding which may be
passed to all GUSI routines taking path names. The address returned
points to a static buffer, so it will be overwritten on further calls. This
generates short names which may be parsed rather quickly. This
routine is available to C users as char * FSp2Encoding(const FSSpec *
desc).
OSErr TFileSpecCatInfo(CInfoPBRec & info, Boolean dirInfo = false)
Gives information about the current object. If dirInfo is true, gives
information about the current object's directory. This routine is
available to C users as OSErr FSpCatInfo(const FSSpec * desc, CInfoPBRec
* info).
OSErr TFileSpecResolve(Boolean gently = true) resolve the object if it is
an alias file. If gently is true (the default), nonexisting files are
tolerated.
Boolean TFileSpecExists() returns true if the object exists.

Boolean TFileSpecIsParentOf(const TFileSpec & other) returns true if
the object is a parent of other.
TFileSpec TFileSpecoperator--() replaces the object with its parent
directory. This routine is available to C users as OSErr FSpUp(FSSpec *
desc).
TFileSpec FileSpecoperator-=(int levels) is equivalent to calling --
levels times and TFileSpec FileSpecoperator-(int levels) is equivalent
to calling -= on a copy of the current object.
TFileSpec TFileSpecoperator+=(ConstStr31Param name), TFileSpec
TFileSpecoperator+=(const char * name), and their non-destructive
counterparts + add a further component to the current object, which
must be an existing directory.
This routine is available to C users as OSErr FSpDown(FSSpec * desc,
ConstStr31Param name).
TFileSpec TFileSpecoperator[](short index) returns the indexth object in
the parent folder of the current object.
A destructive version of this routine is available to C users as OSErr
FSpIndex(FSSpec * desc, short index).
Furthermore, the == and != operators are defined to test TFileSpecs for
equality.
OSErr FSpSmartMove(const FSSpec * from, const FSSpec * to) does all the
work of moving and renaming a file (within the same volume),
handling (I hope) all special cases (You might be surprised how many
there are).

File pattern iterators
Sometimes you might find it useful to find all files ending in .h or all
directories starting with MW. For this purpose, GUSI offers a mechanism
in the header file TFileGlob.h, which defines both C and C++ interfaces.
You start a search by constructing a file pattern iterator with
TFileGlobTFileGlob(const char * pattern, const TFileSpec * startDir =
nil). pattern is an absolute or relative path name, with the following
characters getting a special interpretation

 ?
Matches an arbitrary single character.

 *
Matches any number of characters (including none).

 \
Suppresses the special interpretation of the following character.

startDir provides a nonstandard starting directory for relative
patterns. After you have constructed the iterator, you can check
whether a file was found by calling Boolean TFileGlobValid() . If one
was found, you can use the . To get the next file, call Boolean
TFileGlobNext() , which again returns true if another match was
found.
To call the file pattern iterator routines from C, you have the following
routines

 FileGlobRef NewFileGlob(const char * pattern)
Constructs an iterator.

 Boolean NextFileGlob(FileGlobRef glob)
Advances the iterator.

 Boolean FileGlob2FSSpec(FileGlobRef glob, FSSpec * spec)
Copies the file specification to spec and returns whether the
iterator is valid.

 void DisposeFileGlob(FileGlobRef glob)
Destructs the iterator.

Adding your own socket families
It is rather easy to add your own socket types to GUSI

Pick an unused number between 17 and GUSI_MAX_DOMAINS to use
for your address family.
Include GUSI_P.h.
Write a subclass of SocketDomain and override socket() and
optionally choose().
Write a subclass of Socket and override whatever you want. If
you override recvfrom() and sendto(), read() and write() are
automatically defined.
For more information, study the code in GUSIDispatch.cp and
GUSISocket.cp, which implement the generic socket code. The
easiest actual socket implementation to study is probably
GUSIUnix.cp.

Adding your own file families
GUSI also supports adding special treatment for certain file names to
almost all (tell me if I have forgotten one) standard C library routines
dealing with file names. To avoid countless rescanning of file names,
GUSI preprocesses the names

If the file name starts with "Dev" (case insensitive), the file name
is considered a device name, and the rest of the name can have
any structure you like.
Otherwise, the name is translated into a FSSpec, and therefore
should refer to a real file system object (all intermediate path
name components should refer to existing directories).

To create a file family

Pick an address family, as described above. However, if you
don't plan on creating sockets of this family with socket(), just
specify AF_UNSPEC.
Include GUSIFile_P.h.
Write a subclass of FileSocketDomain, specifying whether you are
interested in device names, file names, or both, and override
Yours() and other calls.
Write a subclass of Socket and override whatever you want.
For more information, study the code in GUSIFile.cp, which
implements the generic file socket code.

In your Yours() member function, you specify whether you are
prepared to handle one of the following functions for a given file name
 enum Request {
 willOpen,
 willRemove,
 willRename,
 willGetFileInfo,
 willSetFileInfo,
 willFAccess,
 willStat,
 willChmod,
 willUTime,
 willAccess
 };

If you return true for a request, your corresponding member function
will be called. Member functions are similar to the corresponding C
library functions, except that their first parameter is a GUSIFileRef &

instead of a const char * (but further file name parameters, as in
rename(), will be left untouched). You might also return true but not
override the member function to indicate that standard file treatment
(EINVAL for many routines) is OK.
The member function will always be called immediately after the
Yours() function, so you may want to pre-parse the file name in the
Yours() function and keep the information for the member function.

